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I am somewhat hesitant to make the introductory remarks of my presenta-
tion, because I am afraid I may hurt the feelings of those who so generously
sponsored this conference on self-organizing systems. On the other hand, I
believe, I may have a suggestion on how to answer Dr. Weyl’s question
which he asked in his pertinent and thought-provoking introduction:“What
makes a self-organizing system?” Thus, I hope you will forgive me if I open
my paper by presenting the following thesis: “There are no such things as
self-organizing systems!”

In the face of the title of this conference I have to give a rather strong
proof of this thesis, a task which may not be at all too difficult, if there is
not a secret purpose behind this meeting to promote a conspiracy to dispose
of the Second Law of Thermodynamics. I shall now prove the non-existence
of self-organizing systems by reductio ad absurdum of the assumption that
there is such a thing as a self-organizing system.

Assume a finite universe, U0, as small or as large as you wish (see Fig.
1a), which is enclosed in an adiabatic shell which separates this finite uni-
verse from any “meta-universe” in which it may be immersed. Assume, fur-
thermore, that in this universe, U0, there is a closed surface which divides
this universe into two mutually exclusive parts: the one part is completely
occupied with a self-organizing system S0, while the other part we may call
the environment E0 of this self-organizing system: S0 & E0 = U0.

I may add that it is irrelevant whether we have our self-organizing system
inside or outside the closed surface. However, in Fig. 1 the system is
assumed to occupy the interior of the dividing surface.

Undoubtedly, if this self-organizing system is permitted to do its job of
organizing itself for a little while, its entropy must have decreased during
this time:

* This article is an adaptation of an address given at The Interdisciplinary Sympo-
sium on Self-Organizing Systems, on May 5, 1959, in Chicago, Illinois; originally pub-
lished in Self-Organizing Systems. M.C. Yovits and S. Cameron (eds.), Pergamon
Press, London, pp. 31–50 (1960).



otherwise we would not call it a self-organizing system, but just a mechan-
ical dSs/dt = 0, or a thermodynamical dSs/dt > 0 system. In order to accom-
plish this, the entropy in the remaining part of our finite universe, i.e. the
entropy in the environment must have increased

otherwise the Second Law of Thermodynamics is violated. If now some of
the processes which contributed to the decrease of entropy of the system
are irreversible we will find the entropy of the universe U0 at a higher level
than before our system started to organize itself, hence the state of the 
universe will be more disorganized than before dSU/dt > 0, in other words,
the activity of the system was a disorganizing one, and we may justly call
such a system a “disorganizing system.”

However, it may be argued that it is unfair to the system to make it
responsible for changes in the whole universe and that this apparent incon-
sistency came about by not only paying attention to the system proper but
also including into the consideration the environment of the system. By
drawing too large an adiabatic envelope one may include processes not 
at all relevant to this argument. All right then, let us have the adiabatic
envelope coincide with the closed surface which previously separated the
system from its environment (Fig. 1b). This step will not only invalidate the
above argument, but will also enable me to show that if one assumes that
this envelope contains the self-organizing system proper, this system turns
out to be not only just a disorganizing system but even a self-disorganizing
system.
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It is clear from my previous example with the large envelope, that here
too—if irreversible processes should occur—the entropy of the system now
within the envelope must increase, hence, as time goes on, the system would
disorganize itself, although in certain regions the entropy may indeed have
decreased. One may now insist that we should have wrapped our envelope
just around this region, since it appears to be the proper self-organizing part
of our system. But again, I could employ that same argument as before, only
to a smaller region, and so we could go on for ever, until our would-be self-
organizing system has vanished into the eternal happy hunting grounds of
the infinitesimal.

In spite of this suggested proof of the non-existence of self-organizing
systems, I propose to continue the use of the term “self-organizing system,”
whilst being aware of the fact that this term becomes meaningless, unless
the system is in close contact with an environment, which posseses available
energy and order, and with which our system is in a state of perpetual inter-
action, such that it somehow manages to “live” on the expenses of this 
environment.

Although I shall not go into the details of the interesting discussion of
the energy flow from the environment into the system and out again, I may
briefly mention the two different schools of thought associated with this
problem, namely, the one which considers energy flow and signal flow as a
strongly linked, single-channel affair (i.e. the message carries also the food,
or, if you wish, signal and food are synonymous) while the other viewpoint
carefully separates these two, although there exists in this theory a signifi-
cant interdependence between signal flow and energy availability.

I confess that I do belong to the latter school of thought and I am par-
ticularly happy that later in this meeting Mr. Pask, in his paper The Natural
History of Networks,2 will make this point of view much clearer than I will
ever be able to do.

What interests me particularly at this moment is not so much the energy
from the environment which is digested by the system, but its utilization of
environmental order. In other words, the question I would like to answer
is: “How much order can our system assimilate from its environment, if any
at all?”

Before tackling this question, I have to take two more hurdles, both of
which represent problems concerned with the environment. Since you have
undoubtedly observed that in my philosophy about self-organizing systems
the environment of such systems is a conditio sine qua non I am first of all
obliged to show in which sense we may talk about the existence of such an
environment. Second, I have to show that, if there exists such an environ-
ment, it must possess structure.

The first problem I am going to eliminate is perhaps one of the oldest
philosophical problems with which mankind has had to live. This problem
arises when we, men, consider ourselves to be self-organizing systems. We
may insist that introspection does not permit us to decide whether the world
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as we see it is “real,” or just a phantasmagory, a dream, an illusion of our
fancy. A decision in this dilemma is in so far pertinent to my discussion,
since—if the latter alternative should hold true—my original thesis assert-
ing the nonsensicality of the conception of an isolated self-organizing
system would pitiably collapse.

I shall now proceed to show the reality of the world as we see it, by reduc-
tio ad absurdum of the thesis: this world is only in our imagination and the
only reality is the imagining “I”.

Thanks to the artistic assistance of Mr. Pask who so beautifully illustrated
this and some of my later assertions,* it will be easy for me to develop my
argument.

Assume for the moment that I am the successful business man with the
bowler hat in Fig. 2, and I insist that I am the sole reality, while everything
else appears only in my imagination. I cannot deny that in my imagination
there will appear people, scientists, other successful businessmen, etc., as for
instance in this conference. Since I find these apparitions in many respects
similar to myself, I have to grant them the privilege that they themselves
may insist that they are the sole reality and everything else is only a con-
coction of their imagination. On the other hand, they cannot deny that their
fantasies will be populated by people—and one of them may be I, with
bowler hat and everything!

With this we have closed the circle of our contradiction: If I assume that
I am the sole reality, it turns out that I am the imagination of somebody
else, who in turn assumes that he is the sole reality. Of course, this paradox
is easily resolved, by postulating the reality of the world in which we happily
thrive.

Having re-established reality, it may be interesting to note that reality
appears as a consistent reference frame for at least two observers. This
becomes particularly transparent, if it is realized that my “proof” was
exactly modeled after the “Principle of Relativity,” which roughly states
that, if a hypothesis which is applicable to a set of objects holds for one
object and it holds for another object, then it holds for both objects simul-
taneously, the hypothesis is acceptable for all objects of the set. Written in
terms of symbolic logic, we have:

(1)

Copernicus could have used this argument to his advantage, by pointing
out that if we insist on a geocentric system, [H(a)], the Venusians, e.g. could
insist on a venucentric system [(Hx)]. But since we cannot be both, center
and epicycloid at the same time [H(a + x)], something must be wrong with
a planetocentric system.

 Ex H a H x H a x x H x( ) ( ) ( ) Æ +( )[ ] Æ ( ) ( )&
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However, one should not overlook that the above expression, R(H) is 
not a tautology, hence it must be a meaningful statement.* What it does,
is to establish a way in which we may talk about the existence of an 
environment.
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* This was observed by Wittgenstein,6 although he applied this consideration to 
the principle of mathematical induction. However, the close relation between the
induction and the relativity principle seems to be quite evident. I would even
venture to say that the principle of mathematical induction is the relativity princi-
ple in number theory.



Before I can return to my original question of how much order a self-
organizing system may assimilate from its environment, I have to show that
there is some structure in our environment. This can be done very easily
indeed, by pointing out that we are obviously not yet in the dreadful state
of Boltzmann’s “Heat-Death.” Hence, presently still the entropy increases,
which means that there must be some order—at least now—otherwise we
could not lose it.

Let me briefly summarize the points I have made until now:

(1) By a self-organizing system I mean that part of a system that eats
energy and order from its environment.

(2) There is a reality of the environment in a sense suggested by the accep-
tance of the principle of relativity.

(3) The environment has structure.

Let us now turn to our self-organzing systems. What we expect is that the
systems are increasing their internal order. In order to describe this process,
first, it would be nice if we would be able to define what we mean by “inter-
nal,” and second, if we would have some measure of order.

The first problem arises whenever we have to deal with systems which
do not come wrapped in a skin. In such cases, it is up to us to define the
closed boundary of our system. But this may cause some trouble, because,
if we specify a certain region in space as being intuitively the proper place
to look for our self-organizing system, it may turn out that this region does
not show self-organizing properties at all, and we are forced to make
another choice, hoping for more luck this time. It is this kind of difficulty
which is encountered, e.g., in connection with the problem of the “localiza-
tion of functions” in the cerebral cortex.

Of course, we may turn the argument the other way around by saying
that we define our boundary at any instant of time as being the envelope
of that region in space which shows the desired increase in order. But 
here we run into some trouble again; because I do not know of any gad
get which would indicate whether it is plugged into a self-disorganizing
or self-organizing region, thus providing us with a sound operational 
definition.

Another difficulty may arise from the possibility that these self-
organizing regions may not only constantly move in space and change in
shape, they may appear and disappear spontaneously here and there,
requiring the “ordometer” not only to follow these all-elusive systems, but
also to sense the location of their formation.

With this little digression I only wanted to point out that we have to be
very cautious in applying the word “inside” in this context, because, even if
the position of the observer has been stated, he may have a tough time
saying what he sees.

Let us now turn to the other point I mentioned before, namely, trying to
find an adequate measure of order. It is my personal feeling that we wish
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to describe by this term two states of affairs. First, we may wish to account
for apparent relationships between elements of a set which would impose
some constraints as to the possible arrangements of the elements of this
system. As the organization of the system grows, more and more of these
relations should become apparent. Second, it seems to me that order has a
relative connotation, rather than an absolute one, namely, with respect to
the maximum disorder the elements of the set may be able to display. This
suggests that it would be convenient if the measure of order would assume
values between zero and unity, accounting in the first case for maximum
disorder and, in the second case, for maximum order. This eliminates the
choice of “neg-entropy” for a measure of order, because neg-entropy always
assumes finite values for systems being in complete disorder. However,
what Shannon3 has defined as “redundancy” seems to be tailor-made for
describing order as I like to think of it. Using Shannon’s definition for
redundancy we have:

(2)

whereby H/Hm is the ratio of the entropy H of an information source to the
maximum value, Hm, it could have while still restricted to the same symbols.
Shannon calls this ratio the “relative entropy.” Clearly, this expression 
fulfills the requirements for a measure of order as I have listed them 
before. If the system is in its maximum disorder H = Hm, R becomes zero;
while, if the elements of the system are arranged such that, given one
element, the position of all other elements are determined, the entropy—
or the degree of uncertainty—vanishes, and R becomes unity, indicating
perfect order.

What we expect from a self-organizing system is, of course, that, given
some initial value of order in the system, this order is going to increase as
time goes on. With our expression (2) we can at once state the criterion for
a system to be self-organizing, namely, that the rate of change of R should
be positive:

(3)

Differentiating eq. (2) with respect to time and using the inequality (3)
we have:

(4)

Since Hm
2 > 0, under all conditions (unless we start out with systems which

can only be thought of as being always in perfect order: Hm = 0), we find
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the condition for a system to be self-organzing expressed in terms of
entropies:

(5)

In order to see the significance of this equation let me first briefly discuss
two special cases, namely those, where in each case one of the two terms
H, Hm is assumed to remain constant.

(a) Hm = const.
Let us first consider the case, where Hm, the maximum possible entropy

of the system remains constant, because it is the case which is usually visu-
alized when we talk about self-organzing systems. If Hm is supposed to be
constant the time derivative of Hm vanishes, and we have from eq. (5):

for (6)

This equation simply says that, when time goes on, the entropy of the
system should decrease. We knew this already—but now we may ask, how
can this be accomplished? Since the entropy of the system is dependent
upon the probability distribution of the elements to be found in certain dis-
tinguishable states, it is clear that this probability distribution must change
such that H is reduced. We may visualize this, and how this can be accom-
plished, by paying attention to the factors which determine the probability
distribution. One of these factors could be that our elements possess certain
properties which would make it more or less likely that an element is found
to be in a certain state. Assume, for instance, the state under consideration
is “to be in a hole of a certain size.” The probability of elements with sizes
larger than the hole to be found in this state is clearly zero. Hence, if the
elements are slowly blown up like little balloons, the probability distribu-
tion will constantly change. Another factor influencing the probability dis-
tribution could be that our elements possess some other properties which
determine the conditional probabilities of an elements to be found in
certain states, given the state of other elements in this system. Again, a
change in these conditional probabilities will change the probability distri-
bution, hence the entropy of the system. Since all these changes take place
internally I’m going to make an “internal demon” responsible for these
changes. He is the one, e.g. being busy blowing up the little balloons and
thus changing the probability distribution, or shifting conditional probabil-
ities by establishing ties between elements such that H is going to decrease.
Since we have some familiarity with the task of this demon, I shall leave
him for a moment and turn now to another one, by discussing the second
special case I mentioned before, namely, where H is supposed to remain
constant.
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(b) H = const.
If the entropy of the system is supposed to remain constant, its time deriv-

ative will vanish and we will have from eq. (5)

for (7)

Thus, we obtain the peculiar result that, according to our previous defin-
ition of order, we may have a self-organizing system before us, if its possi-
ble maximum disorder is increasing. At first glance, it seems that to achieve
this may turn out to be a rather trivial affair, because one can easily imagine
simple processes where this condition is fulfilled. Take as a simple example
a system composed of N elements which are capable of assuming certain
observable states. In most cases a probability distribution for the number
of elements in these states can be worked out such that H is maximized and
an expression for Hm is obtained. Due to the fact that entropy (or, amount
of information) is linked with the logarithm of the probabilities, it is not too
difficult to show that expressions for Hm usually follow the general form*:

This suggests immediately a way of increasing Hm, namely, by just increas-
ing the number of elements constituting the system; in other words a system
that grows by incorporating new elements will increase its maximum en-
tropy and, since this fulfills the criterion for a system to be self-organizing
(eq. 7), we must, by all fairness, recognize this system as a member of the
distinguished family of self-organizing systems.

It may be argued that if just adding elements to a system makes this a
self-organizing system, pouring sand into a bucket would make the bucket
a self-organizing system. Somehow—to put it mildly—this does not seem
to comply with our intuitive esteem for members of our distinguished
family. And rightly so, because this argument ignores the premise under
which this statement was derived, namely, that during the process of adding
new elements to the system the entropy H of the system is to be kept con-
stant. In the case of the bucket full of sand, this might be a ticklish task,
which may conceivably be accomplished, e.g. by placing the newly admit-
ted particles precisely in the same order with respect to some distinguish-
able states, say position, direction, etc. as those present at the instant of
admission of the newcomers. Clearly, this task of increasing Hm by keeping
H constant asks for superhuman skills and thus we may employ another
demon whom I shall call the “external demon,” and whose business it is to
admit to the system only those elements, the state of which complies with
the conditions of, at least, constant internal entropy. As you certainly have
noticed, this demon is a close relative of Maxwell’s demon, only that to-day
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these fellows don’t come as good as they used to come, because before 
19274 they could watch an arbitrary small hole through which the newcomer
had to pass and could test with arbitrary high accuracy his momentum.
Today, however, demons watching closely a given hole would be unable 
to make a reliable momentum test, and vice versa. They are, alas, restricted
by Heisenberg’s uncertainty principle.

Having discussed the two special cases where in each case only one
demon is at work while the other one is chained, I shall now briefly describe
the general situation where both demons are free to move, thus turning to
our general eq. (5) which expressed the criterion for a system to be self-
organizing in terms of the two entropies H and Hm. For convenience this
equation may be repeated here, indicating at the same time the assignments
for the two demons Di and De:

(5)

From this equation we can now easily see that, if the two demons are per-
mitted to work together, they will have a disproportionately easier life com-
pared to when they were forced to work alone. First, it is not necessary that
Di is always decreasing the instantaneous entropy H, or De is always increas-
ing the maximum possible entropy Hm; it is only necessary that the product
of Di’s results with De’s efforts is larger than the product of De’s results with
Di’s efforts. Second, if either H or Hm is large, De or Di respectively can take
it easy, because their efforts will be multiplied by the appropriate factors.
This shows, in a relevant way, the interdependence of these demons.
Because, if Di was very busy in building up a large H, De can afford to be
lazy, because his efforts will be multiplied by Di’s results, and vice versa. On
the other hand, if De remains lazy too long, Di will have nothing to build
on and his output will diminish, forcing De to resume his activity lest the
system ceases to be a self-organizing system.

In addition to this entropic coupling of the two demons, there is also an
energetic interaction between the two which is caused by the energy
requirements of the internal demon who is supposed to accomplish the
shifts in the probability distribution of the elements comprising the system.
This requires some energy, as we may remember from our previous
example, where somebody has to blow up the little balloons. Since this

 
H

H
t

H
H
t

m
m¥ > ¥

d
d

d
d

10 H. von Foerster

Internal
demon’s
results

External
demon’s
efforts

External
demon’s
results

Internal
demon’s
efforts



energy has been taken from the environment, it will affect the activities of
the external demon who may be confronted with a problem when he
attempts to supply the system with choice-entropy he must gather from an
energetically depleted environment.

In concluding the brief exposition of my demonology, a simple diagram
may illustrate the double linkage between the internal and the external
demon which makes them entropically (H) and energetically (E)
interdependent.

For anyone who wants to approach this subject from the point of view of
a physicist, and who is conditioned to think in terms of thermodynamics
and statistical mechanics, it is impossible not to refer to the beautiful little
monograph by Erwin Schrodinger What is Life.5 Those of you who are
familiar with this book may remember that Schrodinger admires particu-
larly two remarkable features of living organisms. One is the incredible high
order of the genes, the “hereditary code-scripts” as he calls them, and the
other one is the marvelous stability of these organized units whose delicate
structures remain almost untouched despite their exposure to thermal agi-
tation by being immersed—e.g. in the case of mammals—into a thermostat,
set to about 310°K.

In the course of his absorbing discussion, Schrodinger draws our atten-
tion to two different basic “mechanisms” by which orderly events can be
produced: “The statistical mechanism which produces order from disorder
and the . . . [other] one producing ‘order from order’.”

While the former mechanism, the “order from disorder” principle is
merely referring to “statistical laws” or, as Schrodinger puts it, to “the mag-
nificent order of exact physical law coming forth from atomic and molecu-
lar disorder,” the latter mechanism, the “order from order” principle is,
again in his words: “the real clue to the understanding of life.” Already
earlier in his book Schrodinger develops this principle very clearly and
states: “What an organism feeds upon is negative entropy.” I think my
demons would agree with this, and I do too.

However, by reading recently through Schrodinger’s booklet I wondered
how it could happen that his keen eyes escaped what I would consider a
“second clue” to the understanding of life, or—if it is fair to say—of self-
organizing systems.Although the principle I have in mind may,at first glance,
be mistaken for Schrodinger’s “order from disorder” principle, it has in fact
nothing in common with it. Hence, in order to stress the difference between
the two, I shall call the principle I am going to introduce to you presently the
“order from noise” principle. Thus, in my restaurant self-organizing systems
do not only feed upon order, they will also find noise on the menu.

Let me briefly explain what I mean by saying that a self-organizing system
feeds upon noise by using an almost trivial, but nevertheless amusing
example.

Assume I get myself a large sheet of permanent magnetic material which
is strongly magnetized perpendicular to the surface, and I cut from this
sheet a large number of little squares (Fig. 3a). These little squares I glue
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to all the surfaces of small cubes made of light, unmagnetic material, having
the same size as my squares (Fig. 3b). Depending upon the choice of which
sides of the cubes have the magnetic north pole pointing to the outside
(Family I), one can produce precisely ten different families of cubes as indi-
cated in Fig. 4.

Suppose now I take a large number of cubes, say, of family I, which is
characterized by all sides having north poles pointing to the outside (or
family I¢ with all south poles), put them into a large box which is also filled
with tiny glass pebbles in order to make these cubes float under friction and
start shaking this box. Certainly, nothing very striking is going to happen:
since the cubes are all repelling each other, they will tend to distribute them-
selves in the available space such that none of them will come too close to
its fellow-cube. If, by putting the cubes into the box, no particular ordering
principle was observed, the entropy of the system will remain constant, or,
at worst, increase a small amount.

In order to make this game a little more amusing, suppose now I collect
a population of cubes where only half of the elements are again members
belonging to family I (or I¢) while the other half are members of family II

12 H. von Foerster

Figure 3. (a) Magnetized square. (b) Cube, family I.

Figure 4. Ten different families of cubes (see text).
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(or II¢) which is characterized by having only one side of different mag-
netism pointing to the outside. If this population is put into my box and I
go on shaking, clearly, those cubes with the single different pole pointing to
the outside will tend, with overwhelming probability, to mate with members
of the other family, until my cubes have almost all paired up. Since the con-
ditional probabilities of finding a member of family II, given the locus of a
member of family I, has very much increased, the entropy of the system has
gone down, hence we have more order after the shaking than before. It is
easy to show* that in this case the amount of order in our system went up
from zero to

if one started out with a population density of n cubes per unit volume.
I grant you, that this increase in orderliness is not impressive at all, par-

ticularly if the population density is high. All right then, let’s take a popu-
lation made up entirely of members belonging to family IVB, which is
characterized by opposite polarity of the two pairs of those three sides
which join in two opposite corners. I put these cubes into my box and you
shake it. After some time we open the box and, instead of seeing a heap of
cubes piled up somewhere in the box (Fig. 5), you may not believe your
eyes, but an incredibly ordered structure will emerge, which, I fancy, may
pass the grade to be displayed in an exhibition of surrealistic art (Fig. 6).

If I would have left you ignorant with respect to my magnetic-surface
trick and you would ask me, what is it that put these cubes into this remark-
able order, I would keep a straight face and would answer: The shaking, of
course—and some little demons in the box.

With this example, I hope, I have sufficiently illustrated the principle I
called “order from noise,” because no order was fed to the system, just
cheap undirected energy; however, thanks to the little demons in the box,
in the long run only those components of the noise were selected which
contributed to the increase of order in the system. The occurrence of a
mutation e.g. would be a pertinent analogy in the case of gametes being the
systems of consideration.

Hence, I would name two mechanisms as important clues to the under-
standing of self-organizing systems, one we may call the “order from order”
principle as Schrodinger suggested, and the other one the “order from
noise” principle, both of which require the co-operation of our demons who
are created along with the elements of our system, being manifest in some
of the intrinsic structural properties of these elements.

I may be accused of having presented an almost trivial case in the attempt
to develop my order from noise principle. I agree. However, I am convinced
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that I would maintain a much stronger position, if I would not have given
away my neat little trick with the magnetized surfaces. Thus, I am very grate-
ful to the sponsors of this conference that they invited Dr. Auerbach6 who
later in this meeting will tell us about his beautiful experiments in vitro of
the reorganization of cells into predetermined organs after the cells have
been completely separated and mixed. If Dr. Auerbach happens to know
the trick by which this is accomplished, I hope he does not give it away.
Because, if he would remain silent, I could recover my thesis that without
having some knowledge of the mechanisms involved, my example was not
too trivial after all, and self-organizing systems still remain miraculous
things.

Appendix

The entropy of a system of given size consisting of N indistinguishable ele-
ments will be computed taking only the spatial distribution of elements into
consideration. We start by subdividing the space into Z cells of equal size
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and count the number of cells Zi lodging i elements (see Fig. 7a). Clearly
we have 

(i)

(ii)

The number of distinguishable variations of having a different number of
elements in the cells is

(iii)P
Z

Zi

= ’
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!

iZ Ni =Â
Z Zi =Â
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whence we obtain the entropy of the system for a large number of cells and
elements:

(iv)

In the case of maximum entropy we must have

(v)

observing also the conditions expressed in eqs. (i) and (ii). Applying the
method of the Lagrange multipliers we have from (iv) and (v) with (i) and
(ii):

multiplying with the factors indicated and summing up the three equations
we note that this sum vanishes if each term vanishes identically. Hence:

(vi)

whence we obtain that distribution which maximizes H:
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(vii)

The two undetermined multipliers a and b can be evaluated from eqs. (i)
and (ii):

(viii)

(ix)

Remembering that

we obtain from (viii) and (ix) after some manipulation:

(x)

(xi)

where n, the mean cell population or density N/Z is assumed to be large in
order to obtain the simple approximations. In other words, cells are
assumed to be large enough to lodge plenty of elements.

Having determined the multipliers a and b, we have arrived at the most
probable distribution which, after eq. (vii) now reads:

(xii)

From eq. (iv) we obtain at once the maximum entropy:

(xiii)

Clearly, if the elements are supposed to be able to fuse into pairs (Fig. 7b),
we have

(xiv)

Equating with Hm and ¢ with H, we have for the amount of order after
fusion:

(xv)
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Discussion
Lederman (University of Chicago): I wonder if it is true that in your definition of
order you are really aiming at conditional probabilities rather than just an order in
a given system, because for a given number of elements in your system, under your
definition of order, the order would be higher in a system in which the information
content was actually smaller than for other systems.

von Foerster: Perfectly right. What I tried to do here in setting a measure of order,
was by suggesting redundancy as a measure. It is easy to handle. From this I can
derive two statements with respect to Hmax and with respect to H. Of course, I don’t
mean this is a universal interpretation of order in general. It is only a suggestion
which may be useful or may not be useful.

Lederman: I think it is a good suggestion but it is an especially good suggestion
if you think of it in terms of some sort of conditional probability. It would be more
meaningful if you think of the conditional probabilities as changing so that one of
the elements is singled out for a given environmental state as a high probability.

von Foerster: Yes, if you change H, there are several ways one can do it. One can
change the conditional probability. One can change also the probability distribution
which is perhaps easier. That is perfectly correct.

Now the question is, of course, in which way can this be achieved? It can be
achieved, I think, if there is some internal structure of those entities which are to
be organized.

Lederman: I believe you can achieve that result from your original mathemati-
cal statement of the problem in terms of H and Hmax, in the sense that you can
increase the order of your system by decreasing the noise in the system which
increases Hmax.

Won Foerster: That is right. But there is the possibility that we will not be able
to go beyond a certain level. On the other hand, I think it is favorable to have some
noise in the system. If a system is going to freeze into a particular state, it is inadapt-
able and this final state may be altogether wrong. It will be incapable of adjusting
itself to something that is a more appropriate situation.

Lederman: That is right, but I think the parallelism between your mathematical
approach and the model you gave in terms of the magnets organizing themselves,
that in the mathematical approach you can increase the information content of the
system by decreasing the noise and similarly in your system where you saw the
magnets organizing themselves into some sort of structure you were also decreas-
ing the noise in the system before you reached the point where you could say ah
ha, there is order in that system.

von Foerster: Yes, that is right.
Mayo (Loyola University): How can noise contribute to human learning? Isn’t

noise equivalent to nonsense?
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von Foerster: Oh, absolutely, yes. (Laughter). Well, the distinction between noise
and nonsense, of course, is a very interesting one. It is referring usually to a refer-
ence frame. I believe that, for instance, if you would like to teach a dog, it would be
advisable not only to do one and the same thing over and over again. I think what
should be done in teaching or training, say, an animal, is to allow the system to
remain adaptable, to ingrain the information in a way where the system has to test
in every particular situation a hypothesis whether it is working or not. This can only
be obtained if the nature into which the system is immersed is not absolutely deter-
ministic but has some fluctuations. These fluctuations can be interpreted in many
different forms. They can be interpreted as noise, as nonsense, as things depending
upon the particular frame of reference we talk about.

For instance, when I am teaching a class, and I want to have something remem-
bered by the students particularly well, I usually come up with an error and they
point out,“You made an error, sir.” I say,“Oh yes, I made an error,” but they remem-
ber this much better than if I would not have made an error. And that is why I am
convinced that an environment with a reasonable amount of noise may not be too
bad if you would really like to achieve learning.

Reid (Montreal Neurological Institute): I would like to hear Dr. von Foerster’s
comment on the thermodynamics of self-organizing systems.

von Foerster: You didn’t say open or closed systems. This is an extremely impor-
tant question and a very interesting one and probably there should be a two-year
course on the thermodynamics of self-organizing systems. I think Prigogin and
others have approached the open system problem. I myself am very interested in
many different angles of the thermodynamics of self-organizing systems because it
is a completely new field.

If your system contains only a thousand, ten thousand or a hundred thousand
particles, one runs into difficulties with the definition of temperature. For instance,
in a chromosome or a gene, you may have a complex molecule involving about 106

particles. Now, how valid is the thermodynamics of 106 particles or the theory which
was originally developed for 1023 particles? If this reduction of about 1017 is valid in
the sense that you can still talk about “temperature” there is one way you may talk
about it. There is, of course, the approach to which you may switch, and that is infor-
mation theory. However, there is one problem left and that is, you don’t have a
Boltzmann’s constant in information theory and that is, alas, a major trouble.
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